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Using Brewster angle for measuring microwave
material parameters of hi-isotropic and chiral media

Ari H. Sihvola and Ismo V. Linden

Helsinkl University of Technology, Electromagnetic Laboratory, SF-02150 Espoo, Finland

ABSTRACT: This contribution focuses on the retrieval of chiral

and nonreciprocal material parameters of hi-isotropic media.

Using the generalized Fresnel reflection coefficients, that the

authors have recently derived for general hi-isotropic media, a

reflection method is suggested for determining the materials

parameters of an unknown material sample. The sample needs

to be thick enough for no transmission and multiple reflection

effects to occur, and it should have one planar surface extending

widely enough to cover the beam of the measuring antenna

beam.

1. INTRODUCTION

Recent times have witnessed increasing interest towards com-

plex materials in microwave and millimeter wave studies,

due to their possible applications in radomes, antennas, re-

flectionless coatings, phase shifters, etc. (see, for example
Jaggard. Liu, and Sun: Spherical chiroshield, Electronics

-Letters, Vol. 27, No. 1, p. 77-79, 1991; Linden, Sihvola,
Viitanen, Tretyakov: Geometrical optics in inhomogeneous
chiral media with application to polarization correction in
inhomogeneous lens antennas, Journal of Electromagnetic
Waves and Applications, Vol. 4, No. 6, p. 533-548, 1990).
Among these are chiral and nonreciprocal media. These can
be seen as examples of general hi-isotropic media that have
to be described through four scalar material parameters, and
can be modeled, for example, with the following constitutive
relations

D = eE + (x – jK)SH (1)

B = pH + (x +j~)m~ (2)

which give the magnetoelectric relation between the electric

E and magnetic fields H, and the electric D and magnetic

flux densities B. In addition to permittivit y e and perme-
ability p, the dimensionless cross-coupling terms are the chi-
rality (or handedness) parameter K and the nonreciprocity
parameter X. For the case x = O,the material is reciprocally
chiral (in the sequel thk type of medium is referred to as
Pasteur medium), and in case K = O, it is nonreciprocal, but
nonchlral, or Teilegen medium. j is the imaginary unit, in-

dicating the time-harmonic dependence exp(jwt ) and PO, eo

are the permeability and the permittivity of free space.

Recent progress in material manufact uring has made it clear

that very soon chiral composites are available; i.e. mix-

tures of metal helices or handed polymer structures with a

host material, which exhibit “optical” activity at microwave

or millimeter wave frequencies (a better term would then

be “electromagnetic activity”). Handed structures, as is

known, produce rotation of the plane of the linearly polar-

ized wave. The dHTerence between this rotation effect and

the earlierly known Faraday rotation is that the rotation
due to chirality is isotropic and reciprocrd, and due to the
geometry of the medkm itself; whereas Faraday rotation is
due to an external magnetic field, therefore rendering the

material unavoidably anisotropic. We have suggested the

use of the term Pasteur medium to the chlral reciprocal ma-

terial in honor of Louis Pasteur, who in 1840’s connected

the earlierly known optical activity to the microstructure of

the solutions he studied (tart aric and racemic acids).

The other novel parameter in the microwave characteriza-
tion of complex media, the nonreciprocity parameter x was

first suggested by Tellegen (Phdips Research Reports, 3, 81-
101, 1948) as he proposed a new network element to circuit
theory, the gyrator. This parameter is seen to affect espe-

cially the reflection properties of the electromagnetic wave,

in contrast to the propagation-affecting abilities of the chi-

rtilt y parameter K. However, for a plane wave obliquely

incident onto the surface of a bi-isot ropic interface, both pa-

ramet ers (in addition to the classical ones, c and p) affect.

This suggests also the possibility to measure these through

reflection measurements.

This presentation will present our latest studies on the re-
flection problem of plane waves from an isotmpic-bi-isotropic

planar interface. We have managed to derive for the first
time the generaEzed Fresnel reflection coefficients for this

problem (Helsinki University of Technology, Electromagnet-

ic Laboratory Report Series, Report 100, September 1991;

for a communication note, see Microwave and Optical Tech-
nology Letters, Vol. 5, No. 2, p. 79-81, February 1992).
The use of these results suggests a new way of measuring all
four material parameters of a general hi-isotropic medium
sample. Especially promising seems to be the use of the

Brewster angle to this material characterization.
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2. PLANE-WAVE REFLECTION FROM A BI-
ISOTROPIC INTERFACE 7z*=ncos’L91EK

{

pe
7

n. — ()r9= arcsin ~ (4)
p~e~ ‘ n

In the problem of the reflection of a plane wave from the
planar interface between two isotropic media that only dif-
fer by their permittivity and permeability, the eigenpolar-
izations (i.e. polarization states of the incident field that
do not change polarization in reflection) are vertically and
horizontally linearly polarized waves. This is not the case
anymore in reflection from a general hi-isotropic interface.

Therefore, if the incident field that is propagating towards
the interface between an isotropic and hi-isotropic half space,
is either horizontally or vertically polarized, it is not any-
more enough to characterize the reflection by one scalar re-
flection coefficient. An incident horizontally polarized wave
will give rise to both co- and cross-polarized reflections, and
vice versa (note, however, that there appear also nonrecip-
rocal phenomena due to the Tellegen parameter).

Consider the geometry of Figure 1, which defines the re-
flection problem. We define as the eigenpolarizations those
polarizations that preserve their states in reflection; these
are elliptical, in general. Let the plane wave impinge from
the upper half space with parameter CO, PO to the lower one
(hi-isotropic) with parameters e,p, K, X. The angle of inci-

dence (the angle between the incident wave vector and the
normal of the interface plane) is 80, which is also equal to

the angle of reflection. There are two refracted rays, because
the eigenwaves in a hi-isotropic medium propagate with two

different phase velocities. According to the Snell’s law, the

refracted angles 0+, O_ obey the relation

sin $0 = n+ sine+ = n– sin%- (3)

with

z

““Jf%
&#.

The eigenvalues for the reflection problem are the two gen-

erfllzed Fresnel reflection coefficients:

(5)

where the impedances of the two half spaces are q = @

Tand q. = poleo, and

~=t+(-+l
& +(.

, (.=- (7)

It is a straightforward exercise to evaluate from these the

classical Fresnel coefficients, as the hi-isotropic half space

degenerates into an isotropic one, K ~ O, x -0 (0 ~ O),

whence cos $+ -i cos 9, cos O_ ~ cos 9:

RI +
7) Cos o– ‘qO Cos (?O

= Rll (vertical polarization)
q Cos 6 + TOCos 00

(8)

& -+
q Cos 00– ?)~ Cos e

= RI (horizontal polarization)
~ COS 6’o + no COS e

(9)

Also, the reciprocal chiral case (Pasteur medium), that has

been studied by Lakhtakia et al. (A parametric study of mi-
crowave reflection characteristics of a planar achiral-chiral
interface, IEEE Trans. Electromagnetic Compatibility, Vol.

28, No. 2, p. 90-95, May 1986), and Bassiri et al. (Electro-

magnetic wave propagation through a dielectric-chlrrd inter-

face and through a chiral slab, Journal of the Optical Society
of America A, Vol. 5, No. 9, p. 1450-1459, Sept. 1986), can

be seen to follow as a special case from our result.

\

3. BREWSTER ANGLES

Figure 1 The geometry of the problem a plane wave is incident
on the planar interface between an isotropic and a hi-isotropic
medium. There are two refract ed rays, and one reflected ray.
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The concept of Brewster angle can also be generalized to
the isotropic–hi-isotropic reflection problem. Brewster an-
gle is not plainly interpreted as the zero-reflection angle for
the vertically polarized incident field, but rather it is the
polarizing angle. (For discussion on Brewster angle regard-

ing complex media, see for example, A. Lakhtakia: Would

Brewster recognize today’s Brewster angle? OSA Optics
News, Vol. 15, No. 6, p. 14-18, 1989.) This Brewster angle

is the angle 00 for which any incident field will be completely
polarized in reflection. Thk is the case when either of the



reflection coefficients vanish. Thk requirement leads to

tanz ~B = *4f@ * (c+/c-)l[R+ (c-/c+)]
C+C-(IF– 1)’ ‘

(lo)

with

This expression can be tested for the isotropic interface, in

which case, by setting C+ = C_ = C = ~~-

and R = (q —qO)/(q + TO),we have the two solutions

or

‘me,l=m, ‘an’B2=/Ti3’14)
which coincide with the well-known results.

Also, the reciprocal chiral special case, which does not seem
to have been solved earlier in analytic form, emerges from
this result.

Numerical results are shown In Figures 2 and 3. The Brew-

ster angles are illustrated for some material parameter val-

ues of the hi-isotropic half space. From these it is seen that

as chlraWy increases, the Brewster angle also increases, and

attains the value 90° (grazing angle) as the chhlity param-
eter satisfies

~=~—1. (15)

Interestingly enough, slightly before this value a second Brew-

ster angle appears, and a qualitatively new phenomenon is

predicted compared to the isotropic problem: the existence
of two Brewster angles for a single material interface as can

be seen from the figures. This second Brewster angle is a
very sensitive function of the chlr~lty parameter, spanning

the whole range of angles (0° < OB < 90°) within a small
regime of chirtilty. Thk suggests an accurate means of mea-
suring the chiralit y of a planar material through reflection

ellipsometry methods. Of course, it should be admitted that
the two Brewster angles only appear for a certain range of

the combination of the four material parameters, and there-
fore this extremely accurate method (witnessed by the steep-

ness of the second Brewster angle curve in Figures 2 and 3)

cannot be exploited in all cases. If the parameters fall out-

side this range, then only information from one Brewster
angle is available, and to get sufficient amount of measured

data, also the reflection amplitudes for different polariza-
tions are needed.

The effect of the Tellegen parameter x on the Brewster an-

gles can be studied from Figures 2 and 3. It is seen that as

either the chirahty or the Tellegen parameter are increased,

the Brewster angle also increases. For larger x values, the

grazing Brewster is attained earlier, i.e. for smaller chirality

values. It can also be seen from Figure 3 that for higher

Tellegen parameter values the range of the second Brewster
angle will be broader.

m=l ,e=2
— — ~=1,~=5

--- ~=2,e=3

907 m=5je=201 {
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F@re 2 The dependence of the Brewster angle on the nor-
malized chirality parameter tc/n of the lower half space in the
problem of a nonchiral-cldral planar interface, where the lower
half space is reciprocal. n = ~- is its refractive in-
dex (relative to the upper half space). Shown are four differ-
ent permittivity and permeability cases of the lower half space:

(/J/Po, C/CO) = (L 2); (1, 5); (Z 3); (.5,20). Note the appearance
of two Brewster angles in a short range close to the upper limit
in the chirality parameter.
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Flgnre 3 The dependence of the Brewster angle on the nor-
rnrdized chirality parameter x/n of the lower half space in the
problem of a nonchiral-bl-isotropic planar interface, where the
lower half spa.. is nonreciprocal. The permittivity of the lower
half space is 3C0 and its permeability is 2~. Shown are three
Tellegen parameter values: X/n = O (reciprocal case), 0.4, and
0.8.
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The previous Brewster angle guarantees that no power is

reflected in the corresponding eigenpolarization. If, on the

other hand, the reflection is described in terms of vertically

and horizontally polarized field components (not eigenpolar-

izations in the hi-isotropic case), there appears a reflection

matrix with vv, IA, v h, and hv components. Interesting may

be the nonreciprocal phenomenon in the reflection where one
of the crossp olarization reflect ion coefficients vanishes and

the other still maintains a finite value. This naturally de-

mands that the Tellegen parameter of the lower half space

be nonzero.

The requirement for thk kind of nonreciprocal “Brewster

angle” is that Rho = O (corresponding to the case that a

vertically polarized incident field gives rise to no horizon-

tally polarized reflected field, but not vice versa). From thk

requirement the mat erial parameters can be calculated. The

result is that the Tellegen parameter should have the value

x = n/fi (and, in the parallel case Reh = O it should have
the value x = –n/w). The requirement for the Pasteur
parameter K, on the other hand, depends on the refractive

index, but is the same for both cases RhV = O and Roh = O.

The dependence of thk cross-Brewster angle on the chirality

parameter is shown in Figure 4 for certain refractive index
values.
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Figure 4 The dependence of the cross-Brewster angle (the angle
for which Rho = Oor R.h = O) on the chirality for certain refrac-
tive index values of the lower half space. The axis parameter is
(K/n)2. The other Brewster requirement is that for the Tellegen
parameter: x = nf~ for Rhm= O and x = –n/@ for ~h = O.
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